
Inside Acropolis
A guide to the Research & Education
Space for contributors and developers
October 2014 Edition

Edited by Mo McRoberts, BBC Archive Development.

http://www.bbc.co.uk/archive/

Copyright © 2014 BBC.

The text of this book is licensed under the terms of the Open Government Licence, v2.0.

Accompanying code and samples are licensed under the terms of the Apache License, Version 2.0.

http://www.nationalarchives.gov.uk/doc/open-government-licence/version/2/
http://www.apache.org/licenses/LICENSE-2.0

Preface

The Research & Education Space (RES) is a project being jointly delivered by Jisc, the
British Universities Film & Video Council (BUFVC), and the BBC. Its aim is to bring as
much as possible of the UK’s publicly-held archives, and more besides, to learners and
teachers across the UK.

At the heart of RES is Acropolis, a technical platform which will collect, index and organise
rich structured data about those archive collections published as Linked Open Data (LOD)
on the Web. The collected data is organised around the people, places, events, concepts
and things related to the items in the archive collections—and, if the archive assets
themselves are available in digital form, that data includes the information on how to
access them, all in a consistent machine-readable form.

Building on the Acropolis platform, applications can make use of this index, along with the
source data itself, in order to make those collections accessible and meaningful.

This book describes how a collection-holder can publish their data in a form which can be
collected and indexed by Acropolis and used by applications, and how an application
developer can make use of the index and interpret the source data in order to present it to
end-users in a useful fashion.

This book is deliberately incomplete. It’s an evolving document, licensed
under the terms of the Open Government Licence, v2.0, and to which we are
welcoming contributions. You can fork the repository on GitHub, or e-mail
the editor directly if you would like to contribute or have suggestions for
changes.

i

http://jisc.ac.uk/
http://bufvc.ac.uk/
http://www.bbc.co.uk/
http://www.nationalarchives.gov.uk/doc/open-government-licence/version/2/
https://github.com/bbcarchdev/inside-acropolis
mailto:RESFeedback@bbc.co.uk

Table of contents
Preface
An introduction to the Acropolis platform1

Linked Open Data: What is it, and how does it work?2

Web addresses, URLs and URIs2.1
Describing things with triples2.2

Predicates and vocabularies2.3

Subject URIs2.4
Defining what something is: classes2.5

Describing things defined by other people2.6

Turtle: the terse triple language2.7
From three to four: relaying provenance with quads2.8

Why does RES use RDF?2.9

The RES API: the index and how it’s structured3
Discovering capabilities3.1

Structure of the index3.2

Common API operations3.3
Requirements for consuming applications4

Retrieving and processing Linked Open Data4.1
Consuming Linked Open Data in detail4.1.1

A starting point: the RES index4.1.2

Editorial Guidelines for Product Developers4.2
Requirements for publishers5

Checklist for data publication5.1

Support the most common RDF serialisations5.1.1
Describe the document and serialisations as well as the item5.1.2

Include licensing information in the data5.1.3

Link to the RDF representations from the HTML variant5.1.4
Perform content negotiation when requests are received for item URIs5.1.5

Editorial Guidelines for Content Providers5.2

https://bbcarchdev.github.io/inside-acropolis/#preface
https://bbcarchdev.github.io/inside-acropolis/#intro
https://bbcarchdev.github.io/inside-acropolis/#lod
https://bbcarchdev.github.io/inside-acropolis/#uris
https://bbcarchdev.github.io/inside-acropolis/#triples
https://bbcarchdev.github.io/inside-acropolis/#predicates-vocabs
https://bbcarchdev.github.io/inside-acropolis/#subject-uris
https://bbcarchdev.github.io/inside-acropolis/#classes
https://bbcarchdev.github.io/inside-acropolis/#describing
https://bbcarchdev.github.io/inside-acropolis/#turtle
https://bbcarchdev.github.io/inside-acropolis/#quads
https://bbcarchdev.github.io/inside-acropolis/#why-rdf
https://bbcarchdev.github.io/inside-acropolis/#api
https://bbcarchdev.github.io/inside-acropolis/#capabilities
https://bbcarchdev.github.io/inside-acropolis/#structure
https://bbcarchdev.github.io/inside-acropolis/#operations
https://bbcarchdev.github.io/inside-acropolis/#consumers
https://bbcarchdev.github.io/inside-acropolis/#retrieving-lod
https://bbcarchdev.github.io/inside-acropolis/#consuming-detail
https://bbcarchdev.github.io/inside-acropolis/#starting
https://bbcarchdev.github.io/inside-acropolis/#editorial-guidelines-for-product-developers
https://bbcarchdev.github.io/inside-acropolis/#publishers
https://bbcarchdev.github.io/inside-acropolis/#publishing-detail
https://bbcarchdev.github.io/inside-acropolis/#support-common-serialisations
https://bbcarchdev.github.io/inside-acropolis/#self-describing-documents
https://bbcarchdev.github.io/inside-acropolis/#explicit-licensing
https://bbcarchdev.github.io/inside-acropolis/#link-alternate
https://bbcarchdev.github.io/inside-acropolis/#perform-conneg
https://bbcarchdev.github.io/inside-acropolis/#editorial-guidelines-for-content-providers

Publishing digital media6

Approaches to publication6.1
Publishing media directly6.1.1

Embeddable players6.1.2

Stand-alone playback pages6.1.3
Access control and media availability6.2

Geographical restrictions (geo-blocking)6.2.1

Federated access control using Shibboleth and the UK Access Management
Federation

6.2.2

IP-based access control6.2.3

Common metadata7

Referencing alternative identifiers: expressing equivalence7.1
Metadata describing rights and licensing7.2

Well-known licences7.2.1

ODRL-based descriptions7.2.2
Describing conditionally-accessible resources7.3

Describing digital assets8

Metadata describing documents8.1
Describing your document8.1.1

Describe each of your serialisations8.1.2
Example8.1.3

Collections and data-sets8.2

Data-set auto-discovery8.2.1
Images8.3

Video8.4

Audio8.5
Describing physical things9

Describing people, projects and organisations10

Describing places11
Describing events12

Describing concepts and taxonomies13

Describing creative works14
Under the hood: the architecture of Acropolis15

Appendix I: Tools and resources

Guides
Tools for consuming Linked Open Data

Tools for processing RDF and publishing Linked Open Data

Technical standards

https://bbcarchdev.github.io/inside-acropolis/#media
https://bbcarchdev.github.io/inside-acropolis/#media-publication
https://bbcarchdev.github.io/inside-acropolis/#media-direct
https://bbcarchdev.github.io/inside-acropolis/#media-frame
https://bbcarchdev.github.io/inside-acropolis/#media-page
https://bbcarchdev.github.io/inside-acropolis/#media-acl
https://bbcarchdev.github.io/inside-acropolis/#media-geo
https://bbcarchdev.github.io/inside-acropolis/#media-saml
https://bbcarchdev.github.io/inside-acropolis/#media-ipacl
https://bbcarchdev.github.io/inside-acropolis/#common
https://bbcarchdev.github.io/inside-acropolis/#sameas
https://bbcarchdev.github.io/inside-acropolis/#rights
https://bbcarchdev.github.io/inside-acropolis/#licenses
https://bbcarchdev.github.io/inside-acropolis/#odrl
https://bbcarchdev.github.io/inside-acropolis/#conditional-access
https://bbcarchdev.github.io/inside-acropolis/#assets
https://bbcarchdev.github.io/inside-acropolis/#document-metadata
https://bbcarchdev.github.io/inside-acropolis/#describe-doc
https://bbcarchdev.github.io/inside-acropolis/#doc-metadata-serialisations
https://bbcarchdev.github.io/inside-acropolis/#doc-metadata-example
https://bbcarchdev.github.io/inside-acropolis/#collections
https://bbcarchdev.github.io/inside-acropolis/#autodiscovery
https://bbcarchdev.github.io/inside-acropolis/#images
https://bbcarchdev.github.io/inside-acropolis/#video
https://bbcarchdev.github.io/inside-acropolis/#audio
https://bbcarchdev.github.io/inside-acropolis/#things
https://bbcarchdev.github.io/inside-acropolis/#people
https://bbcarchdev.github.io/inside-acropolis/#places
https://bbcarchdev.github.io/inside-acropolis/#events
https://bbcarchdev.github.io/inside-acropolis/#concepts
https://bbcarchdev.github.io/inside-acropolis/#creative
https://bbcarchdev.github.io/inside-acropolis/#architecture
https://bbcarchdev.github.io/inside-acropolis/#tools
https://bbcarchdev.github.io/inside-acropolis/#guides
https://bbcarchdev.github.io/inside-acropolis/#lod-consumer-tools
https://bbcarchdev.github.io/inside-acropolis/#lod-publishing-tools
https://bbcarchdev.github.io/inside-acropolis/#tech-standards

Appendix II: Codecs & container formats

Video codecs
Audio codecs

Image codecs

Container formats
Metadata formats

Packaging formats

Streaming formats
Vocabulary index

Class index

Predicate index

https://bbcarchdev.github.io/inside-acropolis/#codecs-containers
https://bbcarchdev.github.io/inside-acropolis/#codec-video
https://bbcarchdev.github.io/inside-acropolis/#codec-audio
https://bbcarchdev.github.io/inside-acropolis/#codec-image
https://bbcarchdev.github.io/inside-acropolis/#containers
https://bbcarchdev.github.io/inside-acropolis/#metadata-formats
https://bbcarchdev.github.io/inside-acropolis/#packaging-formats
https://bbcarchdev.github.io/inside-acropolis/#streaming-formats
https://bbcarchdev.github.io/inside-acropolis/#vocab-index
https://bbcarchdev.github.io/inside-acropolis/#class-index
https://bbcarchdev.github.io/inside-acropolis/#predicate-index

The Acropolis platform is made of up three main components: a specialised web crawler,
Anansi, an aggregator, Spindle, and a public API layer, Quilt.

Anansi’s role is to crawl the web, retrieving permissively-licensed Linked Open Data, and
passing it to the aggregator for processing.

Spindle examines the data, looking for instances where the same digital, physical or
conceptual entity is described in more than one place, primarily where the data explicitly
states the equivalence, and aggregates and stores that information in an index.

This subject-oriented index is the very heart of RES: by re-arranging published data so that
it's organised around the entities described by it, instead of by publisher or data-set,
applications are able to rapidly locate all of the information known about a particular
entity because it’s collected together in one place.

Quilt is responsible for making the index available to applications, also by publishing it as
Linked Open Data. Because RES maintains an index, rather than a complete copy of all
data that it finds, applications must consume data both from the RES index and from the
original data sources—and consequentially Quilt itself also conforms to the publishing
recommendations in this book.

The RES project will not be directly developing end-user applications, although sample
code and demonstrations will be published to assist software developers in doing so. RES
only indexes and publishes data released under terms which permit re-use in both
commercial and non-commercial settings.

For RES to be most useful, holders of publicly-funded archive collections across the UK
need to publish Linked Open Data describing their collections (including digital assets,
where they exist). Although many collections are already doing so or plan to, the RES
project partners will be providing tools and advice to collection-holders in order to assist
them throughout the lifetime of the project.

An introduction to the Acropolis
platform

1

https://bbcarchdev.github.io/inside-acropolis/#licenses
https://bbcarchdev.github.io/inside-acropolis/#lod
https://bbcarchdev.github.io/inside-acropolis/#sameas

Linked Open Data is a mechanism for publishing structured data on the Web about
virtually anything, in a form which can be consistently retrieved and processed by
software. The result is a world wide web of data which works in parallel to the web of
documents our browsers usually access, transparently using the same protocols and
infrastructure.

Where the ordinary web of documents is a means of publishing a page about something
intended for a human being to understand, this web of data is a means of publishing data
about those things.

Uniform Resource Locators (URLs), often known as Web addresses, are a way of
unambiguously identifying something which is published electronically. Although there
are a variety of kinds of URL, most that you day-to-day see begin with http or https: this is
known as the scheme, and defines how the rest of the URL is structured—although most
kinds of URL follow a common structure.

The scheme also indicates the communications protocol which should be used to access
the resource identified by the URL: if it's http, then the resource is accessible using HTTP—
the protocol used by web servers and browsers; if it's https, then it’s accessible using
secure HTTP (i.e., HTTP with added encryption).

Following the scheme in a URL is the authority—the domain name of the web site: it’s
called the authority because it identifies the entity responsible for defining the meaning
and structure of the remainder of the URL. If the URL begins with http://www.bbc.co.uk/, you
know that it's defined and managed by the BBC; if it begins with http://www.bfi.org.uk/, you
know that it's managed by the BFI, and so on.

After the authority is an optional path (i.e., the location of the document within the context
of the particular domain name or authority), and optional query parameters (beginning
with a question-mark), and fragment (beginning with a hash-mark).

URLs serve a dual purpose: not only do they provide a name for something, but they also
provide anything which understands them with the information they need to retrieve it.
Provided your application is able to speak the HTTP protocol, it should in principle be able
to retrieve anything using a http URL.

Linked Open Data: What is it, and how
does it work?

2

Web addresses, URLs and URIs2.1

The act of accessing the resource identified by a URL is known as resolving
it.

i

Universal Resource Indicators (URIs) are a superset of URLs, and are in effect a kind of
universal identifier: their purpose is to name something, without necessarily indicating how
to retrieve it. In fact, it may be that the thing named using a URI cannot possibly be
retrieved using a piece of software and an Internet connection because it refers to an
abstract concept or a physical object.

URIs follow the same structure as URLs, in that there is a scheme defining how the
remainder is structured, and usually some kind of authority, but there are many different
schemes, and many of them do not have any particular mechanism defined for how you
might retrieve something named using that scheme.

For example, the tag: URI scheme provides a means for anybody to define a name for
something in the form of a URI, using a domain name that they control as an authority,
but without indicating any particular semantics about the thing being named.

Meanwhile, URIs which begin with urn: are actually part of one of a number of sub-
schemes, many of which exist as a means of writing down some existing identifier about
something in the form of a URI. For example, an ISBN can be written as a URI by prefixing
it with urn:isbn: (for example, urn:isbn:9781899066100).

You might be forgiven for wondering why somebody might want to write an ISBN in the
form of a URI, but in fact there are a few reasons. In most systems, ISBNs are effectively
opaque alphanumeric strings: although there is usually some validation of the check digit
upon data entry, once stored in a database, they are rarely interrogated for any particular
meaning. Given this, ISBNs work perfectly well for identifying books for which ISBNs have
been issued—but what if you want to store data about other kinds of things, too?
Recognising that this was a particular need for retailers, a few years ago ISBNs were
made into a subset of Global Trade Information Numbers (GTINs), the system used for
barcoding products sold in shops.

By unifying ISBNs and GTINs, retailers were able to use the same field in their database
systems for any type of product being sold, whether it was a book with an ISBN, or some
other kind of product with a GTIN. All the while, the identifier remained essentially opaque:
provided the string of digits and letters scanned by the bar-code reader could be matched
to a row in a database, it doesn't matter precisely what those letters and numbers actually
are.

In other words, while URLs are used specifically to identify digital resources
which can be retrieved from a Web server, URIs can be used to identify
anything: the URLs we use in our browsers are all URIs, but not all URIs are
URLs.

i

http://tools.ietf.org/html/rfc4151

Representing identifiers in the form of URIs can be thought of as another level of
generalisation: it allows the development of systems where the underlying database
doesn’t need to know nor care about the kind of identifier being stored, and so can store
information about absolutely anything which can be identified by a URI. In many cases,
this doesn’t represent a huge technological shift—those database systems already pay
little attention to the structure of the identifier itself.

Hand-in-hand with this generalisation effect is the ability to disambiguate and harmonise
without needing to coordinate a variety of different standards bodies across the world.
Whereas the integration of ISBNs and GTINs took a particular concerted effort in order to
achieve, the integration of ISBNs and URNs was only a matter of defining the URN
scheme, because URIs are already designed to be open-ended and extensible.

Linked Open Data URIs are a subset of URIs which, again, begin with http: or https:, but do
not necessarily name something which can be retrieved from a web server. Instead, they
are URIs where performing resolution results in machine-readable data about the entity
being identified.

In summary:

Linked Open Data uses the Resource Description Framework (RDF) to convey information
about things. RDF is an open-ended system for modelling information about things,
which it does by breaking it down into statements (or assertions), each of which consists
of a subject, a predicate and an object.

The subject is the thing being described; the predicate is the aspect or attribute of the
subject being described; and the object is the description of that particular attribute.

Term Used for…

URLs Identifying digital resources and specifying where they can be retrieved
from

URIs Identifying anything, regardless of whether it can be retrieved
electronically or not

Linked Open
Data URIs

Identifying anything, but in a way which means that descriptive
metadata can be retrieved when the URI is resolved

Describing things with triples2.2

If you are familiar with object-oriented programming, you may find it useful
to think of a subject as being an instance, a predicate as a property, and an
object as a value. In fact, the terms are often used interchangeably.

i

For example, you might want to state that the book with the ISBN 978-1899066100 has
the title Acronyms and Synonyms in Medical Imaging. You can break this assertion down
into its subject, predicate, and object:

Together, this statement made up of a subject, predicate and object is called a triple
(because there are three components to it), while a collection of statements is called a
graph.

In RDF, the subject and the predicate are expressed as URIs this helps to remove
ambiguity and the risk of clashes so that the data can be published and consumed in the
same way regardless of where it comes from or who’s processing it. Objects can be
expressed as URIs where you want to assert some kind of reference to something else,
but can also be literals (such as text, numeric values, dates, and so on).

RDF doesn’t specify the meaning of most predicates itself: in other words, RDF doesn’t
tell you what URI you should use to indicate “has the title”. Instead, because anybody can
create a URI, it’s entirely up to you whether you invent your own vocabulary when you
publish your data, or adopt somebody else’s. Generally, of course, if you want other
people to be able to understand your data, it’s probably a good idea to adopt existing
vocabularies where they exist.

In essence, RDF provides the grammar, while community consensus provides the
dictionary.

One of the most commonly-used general-purpose vocabularies is the DCMI Metadata
Terms, managed by the Dublin Core Metadata Initiative (DCMI), and which includes a
suitable title predicate:

With this triple, a consuming application that understands the DCMI Metadata Terms
vocabulary can process that data and understand the predicate to indicate that the item
has the title Acronyms and Synonyms in Medical Imaging.

Subject Predicate Object

ISBN 978-1899066100 Has the title Acronyms and Synonyms in Medical Imaging

Subject Predicate Object

ISBN 978-
1899066100 http://purl.org/dc/terms/title

Acronyms and Synonyms in Medical
Imaging

Predicates and vocabularies2.3

http://dublincore.org/documents/dcmi-terms/
http://purl.org/dc/terms/title

Because http://purl.org/dc/terms/title is quite long-winded, it’s common to write predicate
URIs in a compressed form, consisting of a namespace prefix and local name—similar to
the xmlns mechanism used in XML documents.

Because people will often use the same prefix to refer to the same namespace URI, it is
not unusual to see this short form of URIs used in books and web pages. Some common
prefixes and namespace URIs are shown below:

For example, defining the namespace prefix dct with a namespace URI of
http://purl.org/dc/terms/, we can write our predicate as dct:title instead of
http://purl.org/dc/terms/title. RDF systems re-compose the complete URI by concatenating
the prefix URI and the local name.

In RDF, subjects are also URIs. While in RDF itself there are no particular restrictions upon
the kind of URIs you can use (and there are a great many different kinds — those
beginning http: and https: that you see on the Web are just two of hundreds), Linked Open
Data places some restrictions on subject URIs in order to function. These are:

Vocabulary Namespace URI
Often

abbreviated as

RDF Syntax http://www.w3.org/1999/02/22-rdf-

syntax-ns#
rdf:

RDF Schema http://www.w3.org/2000/01/rdf-

schema#
rdfs:

DCMI Metadata Terms http://purl.org/dc/terms/ dct:

FOAF http://xmlns.com/foaf/0.1/ foaf:

Vocabulary of Interlinked Datasets
(VoID) http://rdfs.org/ns/void# void:

The Dublin Core Metadata Initiative and the core of the DCMI Metadata
Terms vocabulary pre-date RDF and Linked Open Data by some years: older
vocabularies and classification schemes have been routinely adapted and
re-purposed for RDF as it’s become more widely used as an approach to
representing structured data.

i

An index of all of the vocabularies referenced in this book is provided at the
end of the book.

i

Subject URIs2.4

Subject URIs must begin with http: or https:.1.

http://purl.org/dc/terms/title
http://purl.org/dc/terms/
http://purl.org/dc/terms/title
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/TR/2014/PER-rdf-schema-20140109/
http://www.w3.org/2000/01/rdf-schema#
http://dublincore.org/documents/dcmi-terms/
http://purl.org/dc/terms/
http://xmlns.com/foaf/spec/
http://xmlns.com/foaf/0.1/
http://vocab.deri.ie/void
http://rdfs.org/ns/void#
https://bbcarchdev.github.io/inside-acropolis/#vocab-index

In practice, this means that when you decide upon a subject URI, it needs to be within a
domain name that you control and can operate a web server for; you need to have a
scheme for your subject URIs which distinguishes between things which are represented
digitally (and so have ordinary URLs) and things which cannot; you also need to arrange
for your web server to actually serve RDF when it’s requested; and finally you need to
decide a form for your subject URIs which minimises changes.

This may sound daunting, but it can be quite straightforward—and shares much in
common with deciding upon a URL structure for a website that is intended only for
ordinary browsers.

For example, if you are the Intergalactic Alliance Library & Museum, whose domain name is
ialm.int, you might decide that all of your books’ URIs will begin with http://ialm.int/books/,
and use the full 13-digit ISBN, without dashes, as the key. You could pick something other
than the ISBN, such as an identifier meaningful only to your own internal systems, but it
makes developers’ lives easier if you incorporate well-known identifiers where it’s not
problematic to do so.

Because this web of data co-exists with the web of documents, begin by defining the URL
to the document about this book:

http://ialm.int/books/9781899066100

Anybody visiting that URL in their browser will be provided with information about the
book in your collection. Because the URL incorporates a well-known identifier, the ISBN, if
any other pieces of information about the book change or are corrected, that URL
remains stable. As a bonus, incorporating the ISBN means that the URL to the document
is predictable.

They must be unique: although you can have multiple URIs for the same thing, one
URI can’t refer to multiple distinct things at once.

2.

If a Linked Open Data consumer makes an HTTP request for the subject URI, the
server should send back RDF data describing that subject.

3.

As with URLs, subject URIs need to be persistent: that is, they should change as little
as possible, and where they do change, you need to be able to make arrangements for
requests for the old URI to be forwarded to the new one.

4.

Of course, the ISBN may have been entered incorrectly (or may be cancelled
by the registration authority), and it would be worth planning for that
eventuality—but assuming that your collection website’s data is based upon
information that is used operationally day-to-day, the risk of that needing to
occur is kept to a minimum.

i

Having defined the URL for book pages, it’s now time to define the rest of the structure.
The Intergalactic Alliance Library & Museum web server will be configured to serve web
pages to web browsers, and RDF data to RDF consumers: that is, there are multiple
representations of the same data. It’s useful, from time to time, to be able to refer to each
of these representations with a distinct URL. Let’s say, then, that we’ll use the general
form:

http://ialm.int/books/9781899066100.EXT

In this case, EXT refers to the well-known filename extension for the particular type of
representation we’re referring to.

Therefore, the HTML web page for our book will have the representation-specific URL of:

http://ialm.int/books/9781899066100.html

If you also published CSV data for your book, it could be given the representation-specific
URL of:

http://ialm.int/books/9781899066100.csv

RDF can be expressed in a number of different forms, or serialisations. The most
commonly-used serialisation is called Turtle, and typically has the filename extension of
ttl. Therefore our Turtle serialisation would have the representation-specific URL of:

http://ialm.int/books/9781899066100.ttl

Now that we have defined the structure of our URLs, we can define the pattern used for
the subject URIs themselves. Remember that the URI needs to be dereferenceable—that is,
when a consuming application makes a request for it, the server can respond with the
appropriate representation.

In order to do this, there are two options: we can use a special kind of redirect, or we can
use fragments. The fragment approach works best where you have a document for each
individual item, as we do here, and takes advantage of the fact that in the HTTP protocol,
any part of a URL following the “#” symbol is never sent to the server.

Thus, let’s say that we’ll distinguish our URLs from our subject URIs by suffixing the
subject URIs with #id. The URI for our book therefore becomes:

http://ialm.int/books/9781899066100#id

Media types (sometimes also called MIME types or content types) are
registered with the Internet Assigned Numbers Authority (IANA). The
registration document includes the preferred or commonly-used filename
extensions for that type. For example, the registration document for HTML
can be found on the IANA website.

i

http://www.iana.org/assignments/media-types/text/html

When an application requests the information about this book, by the time it arrives at our
web server, it’s been turned into a request for the very first URL we defined—the generic
“document about this book” URL:

http://ialm.int/books/9781899066100

When an application understands RDF and tells the server as much as part of the
request, the server can send back the Turtle representation instead of an HTML web page
—a part of the HTTP protocol known as content negotiation. Content negotiation allows a
server to pick the most appropriate representation for something (where it has multiple
representations), based upon the client’s preferences.

With our subject URI pattern defined, we can revisit our original assertion:

One of the few parts of the common vocabulary which is defined by RDF itself is the
predicate rdf:type, which specifies the class (or classes) of a subject. Like predicates,
classes are defined by vocabularies, and are also expressed as URIs. The classes of a
subject are intended to convey what that subject is.

For example, the Bibliographic Ontology, whose namespace URI is
http://purl.org/ontology/bibo/ (commonly prefixed as bibo:) defines a class named bibo:Book
(whose full URI we can deduce as being http://purl.org/ontology/bibo/Book).

If we write a triple which asserts that our book is a bibo:Book, any consumers which
understand the Bibliographic Ontology can interpret our data as referring to a book:

Subject Predicate Object

http://ialm.int/books/9781899066100#id dct:title
Acronyms and Synonyms in Medical
Imaging

Subject Predicate Object

http://ialm.int/books/9781899066100#id rdf:type bibo:Book

Acronyms and Synonyms in Medical

The reason the “fragment” portion of the URI is stripped off the request by
the time it arrives at the web server is because the HTTP protocol states
that fragments are never sent over the wire—that is, they are not included in
the protocol exchange between the client and the server. Their original use
was to identify a section within a web page and allow a browser to skip
straight to it even though it requested and was served the whole page.
Fragments in URLs are regularly used for this purpose today.

i

Defining what something is: classes2.5

http://purl.org/ontology/bibo/
http://purl.org/ontology/bibo/Book

There is no technical reason why your subject URIs must only be URIs that you control
directly. In Linked Open Data, the matter of trust is a matter for the data consumer: one
application might have a white-list of trusted sources, another might have a black-list of
sources known to be problematic, another might have more complex heuristics, while
another might use your social network such that assertions from your friends are
considered more likely to be trustworthy than those from other people.

Describing subjects defined by other people has a practical purpose. Predicates work in a
particular direction, and although sometimes vocabularies will define pairs of predicates
so that you can make a statement either way around, interpreting this begins to get
complicated, and so most vocabularies define predicates only in one direction.

As an example, you might wish to state that a book held in a library is about a subject that
you’re describing. On a web page, you’d simply write this down and link to it—perhaps as
part of a “Useful resources” section. In Linked Open Data, you can make the assertion that
one of the subjects of the other library’s book is the one you’re describing. This works
exactly the same way as if you were describing something that you’d defined yourself—
you simply write the statement, but somebody else’s URI as the subject.

This can also be used to make life easier for developers and reduce network overhead of
applications. In your “Useful resources” section, you probably wouldn’t only list the URL to
the page about the book: instead, you’d list the title and perhaps the author as well as
linking to the page about the book. You can do that in Linked Open Data, too. Let’s say
that we’re expressing the data about a subject—Roman Gaul—which we’ve assigned a
URI of http://ialm.int/things/2068003#id:

In this example we’ve defined a subject, called Roman Gaul, of which we’ve provided very
little detail, except to say that it’s a subject of the book Asterix the Gaul, whose identifier is
defined by the British Library.

http://ialm.int/books/9781899066100#id dct:title Imaging

Subject Predicate Object

http://ialm.int/things/2068003#id dct:title Roman Gaul

http://bnb.data.bl.uk/id/resource/006889069 rdf:type bibo:Book

http://bnb.data.bl.uk/id/resource/006889069 dct:title Asterix the Gaul

http://bnb.data.bl.uk/id/resource/006889069 dct:subject http://ialm.int/things/2068003#id

Describing things defined by other people2.6

Note that we haven‘t described the book Asterix the Gaul in full: RDF operates on an open
world principle, which means that sets of assertions are generally interpreted as being
incomplete—or rather, only as complete as they need to be. The fact that we haven’t
specified an author or publisher of the book doesn’t mean there isn’t one, just that the
data isn’t present here; where in RDF you need to state explicitly that something doesn’t
exist, there is usually a particular way to do that.

Turtle is one of the most common languages for writing RDF in use today—although there
are many others. Turtle is intended to be interpreted and generated by machines first and
foremost, but also be readable and writeable by human beings (albeit usually software
developers).

In its simplest form, we can just write out our statements, one by one, each separated by
a full stop. URIs are written between angle-brackets (< and >), while string literals (such as
the names of things) are written between double-quotation marks (").

This is quite long-winded, but fortunately Turtle allows us to define and use prefixes just
as we have in this book. When we write the short form of a URI, it’s not written between
angle-brackets:

Because Turtle is designed for RDF, and rdf:type is defined by RDF itself, Turtle provides a
nice shorthand for the predicate: a. We can simply say that our book is a bibo:Book:

Writing the triples out this way quickly gets repetitive: you don’t want to be writing the
subject URI every time, especially not if writing Turtle by hand. If you end a statement with
a semi-colon instead of a full-stop, it indicates that what follows is another predicate and
object about the same subject:

<http://ialm.int/books/9781899066100#id> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://purl.org/ontology/bibo/Book> .

<http://ialm.int/books/9781899066100#id> <http://purl.org/dc/terms/title> "Acronyms and Synonyms in

Medical Imaging" .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix dct: <http://purl.org/dc/terms/> .

@prefix bibo: <http://purl.org/ontology/bibo/> .

<http://ialm.int/books/9781899066100#id> rdf:type bibo:Book .

<http://ialm.int/books/9781899066100#id> dct:title "Acronyms and Synonyms in Medical Imaging" .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix dct: <http://purl.org/dc/terms/> .

@prefix bibo: <http://purl.org/ontology/bibo/> .

<http://ialm.int/books/9781899066100#id> a bibo:Book .

<http://ialm.int/books/9781899066100#id> dct:title "Acronyms and Synonyms in Medical Imaging" .

Turtle: the terse triple language2.7

Turtle includes a number of capabilities which we haven’t yet discussed here, but are
important for fully understanding real-world RDF in general and Turtle documents in
particular. These include:

Typed literals

Typed literals: literals which aren’t simply strings of text, but can be of any one of the
XML Schema data types.

Literal types are indicated by writing the literal value, followed by two carets, and then
the datatype URI: for example, "2013-01-26"^^xsd:date.

Blank nodes

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix dct: <http://purl.org/dc/terms/> .

@prefix bibo: <http://purl.org/ontology/bibo/> .

<http://ialm.int/books/9781899066100#id>

 a bibo:Book ;

 dct:title "Acronyms and Synonyms in Medical Imaging" .

If you end a statement with a comma instead of a semi-colon or full-stop, it
means that what follows is another object with the same subject and
predicate—in other words, it’s a quick way of writing multiple values.

i

http://www.w3.org/TR/xmlschema-2/

Blank nodes are entities for which some information is provided, but where the subject
URI is not known. There are two different ways of using blank nodes in Turtle: a blank
node value is one where in place of a URI or a literal value, an entity is partially
described.

Another way of using blank nodes is to assign it a private, transient identifier (a blank
node identifier), and then use that identifier where you’d normally use a URI as a
subject or object. The transient identifier has no meaning outside of the context of the
document: it’s simply a way of referring to the same (essentially anonymous) entity in
multiple places within the document.

A blank node value is expressed by writing an opening square bracket, followed by the
sets of predicates and values for the blank node, followed by a closing square bracket.
For example, we can state that an author of the book is a nondescript entity who we
know is a person named Nicola Strickland, but for whom we don’t have an identifier:

Blank node identifiers are written similarly to the compressed form of URIs, except
that an underscore is used as the prefix. For example, _:johnsmith. You don’t have to do
anything special to create a blank node identifier (simply use it), and the actual name
you assign has no meaning outside of the context of the document—if you replace all
instances of _:johnsmith with _:zebra, the actual meaning of the document is unchanged
—although it may be slightly more confusing to read and write as a human.

Multi-lingual string literals

String literals in the examples given so far are written in no particular language (which
may be appropriate in some cases, particularly when expressing people’s names).

The language used for a string literal is indicated by writing the literal value, followed
by an at-sign, and then the ISO 639-1 language code, or an ISO 639-1 language code,
followed by a hyphen, and a ISO 3166-1 alpha-2 country code.

For example: "Intergalatic Alliance Library & Museum Homepage"@en, or "grey"@en-gb.

Base URIs

By default, the base URI for the terms in a Turtle document is the URI it’s being served
from. Occasionally, it can be useful to specify an alternative base URI. To do this, an
@base statement can be included (in a similar fashion to @prefix).

For example, if a document specifies @base <http://www.example.com/things/> ., then the URI
<12447652#id> within that document can be expanded to
<http://www.example.com/things/12447652#id>, while the URI </artefacts/47fb01> would be
expanded to <http://www.example.com/artefacts/47fb01>.

<http://ialm.int/books/9781899066100#id> dct:creator [

 a foaf:Person ;

 foaf:name "Nicola Strickland"

] .

http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

An example of a Turtle document making use of some of these capabilities is shown
below:

In this example, we are still describing our book, but we specify that the title is in English
(though don’t indicate any particular national variant of English); we state that it was
issued (published) in the year 1997, and that it’s publisher—for whom we don’t have an
identifier—is an organisation whose name is CRC Press.

While triples are a perfectly servicable mechanism for describing something, they don’t
have the ability to tell you where data is from (unless you impose a restriction that you
only deal with data where the domain of the subject URI matches that of the server you’re
retrieving from). In some systems, including Acropolis, this limitation is overcome by
introducing another element: a graph URI, identifying the source of a triple. Thus, instead
of triples, RES actually stores quads.

When we assign an explicit URI to a graph in this way, it becomes known as a named
graph—that is, a graph with an explicit identifier (name) assigned to it.

Turtle itself doesn’t have a concept of named graphs, but there is an extension to Turtle,
named TriG, which includes the capability to specify the URI of a named graph containing
a particular set of triples.

@base <http://ialm.int/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix dct: <http://purl.org/dc/terms/> .

@prefix bibo: <http://purl.org/ontology/bibo/> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

</books/9781899066100#id>

 a bibo:Book ;

 dct:title "Acronyms and Synonyms in Medical Imaging"@en ;

 dct:issued "1997"^^xsd:gYear ;

 dct:creator _:allison, _:strickland ;

 dct:publisher [

 a foaf:Organization ;

 foaf:name "CRC Press"

] .

_:strickland

 a foaf:Person ;

 foaf:name "Nicola Strickland" .

_:allison

 a foaf:Person ;

 foaf:name "David J. Allison" .

For further information on RDF’s capabilities and Turtle, be sure to read
through the RDF Primer and the Turtle specification.

i

From three to four: relaying provenance with quads2.8

http://www.w3.org/TR/2014/REC-trig-20140225/
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140225/
http://www.w3.org/TR/2014/REC-turtle-20140225/

RDF isn’t necessarily the simplest way of expressing some data about something, and
that means it’s often not the first choice for publishers and consumers. Often, an
application consuming some data is designed specifically for one particular dataset, and
so its interactions are essentially bespoke and comparatively easy to define.

RES, by nature, brings together a large number of different structured datasets, describing
lots of different kinds of things, with a need for a wide range of applications to be able to
work with those sets in a consistent fashion.

At the time of writing (ten years after its introduction), RDF’s use of URIs as identifiers,
common vocabularies and data types, inherent flexibility and well-defined structure
means that is the only option for achieving this.

Whether you’re describing an audio clip or the year 1987, a printed book or the concept of
a documentary film, RDF provides the ability to express the data you hold in intricate
detail, without being beholden to a single central authority to validate the modelling work
undertaken by experts in your field.

For application developers, the separation of grammar and vocabularies means that
applications can interpret data in as much or as little detail as is useful for the end-users.
For instance, you might develop an application which understands a small set of general-
purpose metadata terms but which can be used with virtually everything surfaced
through RES.

Alternatively, you might develop a specialist application which interprets rich descriptions
in a particular domain in order to target specific use-cases. In either case, you don’t need
to know who the data comes from, only sufficient understanding of the vocabularies in
use to satisfy your needs.

However, because we recognise that publishing and consuming Linked Open Data as an
individual publisher or application developer may be unfamiliar territory, and so
throughout the lifetime of the project we are committed to publishing documentation,
developing tools and operating workshops in order to help developers and publishers
work with RDF in general and RES in particular more easily.

While Quilt will serve RDF/XML and Turtle when requested, it will also serve
TriG: this allows applications to determine the provenance of statements
stored in the RES index, allowing them to white– or black-list data sources if
needed.

i

Why does RES use RDF?2.9

Vocabularies used in this section:

At the core of the platform is the RES index. This index is available as web pages (to make
it easier for application developers to see what’s there and how it works), but is primarily
published as Linked Open Data. Accessing the index and requesting machine-readable
data is the RES platform API.

The RES index takes the form of a void:Dataset, and the operations that you might perform
against the RES index will often be applicable to other datasets that you might encounter.

Depending upon your application design, it may be desirable to offer the same browse
and query capabilities to any dataset that the user navigates to, rather than hard-coding
behaviour specific to the RES index.

As the index is presented as Linked Open Data, discovering information about it is the
same process used for obtaining descriptive metadata for anything else: de-reference the
entity URI (which in the case of the index is the API root—currently
http://beta.acropolis.org.uk/), and examine the triples whose subject is that URI.

Vocabulary Namespace URI Prefix

OpenSearch http://a9.com/-/spec/opensearch/1.1/ osd:

OWL http://www.w3.org/2002/07/owl# owl:

RDF schema http://www.w3.org/2000/01/rdf-schema# rdfs:

RDF syntax http://www.w3.org/1999/02/22-rdf-syntax-ns# rdf:

VoiD http://rdfs.org/ns/void# void:

XHTML Vocabulary http://www.w3.org/1999/xhtml/vocab# xhtml:

Capability Expressed using…

The RES API: the index and how it’s
structured

3

Because the API is read-only and exposed through HTTP Content
Negotiation, there are no API keys or other authentication mechanisms:
applications can begin using the API immediately by consuming it as Linked
Open Data.

i

Discovering capabilities3.1

http://acropolis.org.uk/
http://www.opensearch.org/Specifications/OpenSearch/1.1
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/2014/PER-rdf-schema-20140109/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://vocab.deri.ie/void
http://www.w3.org/1999/xhtml/vocab
https://bbcarchdev.github.io/inside-acropolis/#consumers

The RES index is made up of a series of composite entities which are constructed using
the data discovered by the crawler. Each of the composite entities has an owl:sameAs
relationship with the various source entities used to construct it, a portion of whose data
is cached in the index.

If you dereference the URI for the RES index, the result is some metadata about the index
itself, including information about how to perform different kinds of query, the different
browseable partitions, and some selected sample entities.

When a query is performed against the index (i.e., by adding some query parameters to
the URI), the result is a small amount of metadata about the query and the results along
with a list of these composite entities.

If you then dereference one of these entities—drilling down into it—the document returned
will contain both the composite entity, and the cached data about the source entities. If
the entity references, or is referenced by other entities, the relevant composite entities are
also included.

Below is a list of some of the most common kinds of operation an application might wish
to perform against the RES index. Note that these operations can apply to any dataset.

Class partitions (e.g., “all people”, “all places”) void:classPartition

Browse endpoint for everything in the index void:rootResource

Locate an entry from an external URI void:uriLookupEndpoint

Free-form search (complete description document) void:openSearchDescription

Free-form search URL template osd:template

Links to entities contained within the index rdfs:seeAlso

References to original source data about an entity in
the index owl:sameAs

Links to first, last, previous and next pages of results xhtml:first, xhtml:last, xhtml:prev,
xhtml:next

Operation Implementation

Determine the

Structure of the index3.2

An index of the predicates which are used to generate the composite
entities and cached alongside them can be found at the end of the book.

i

Common API operations3.3

https://bbcarchdev.github.io/inside-acropolis/#predicate-index

kind of entity
that retrieved
data
describes

Examine the rdf:type properties and compare against the class index.

Locate class
partitions Iterate the void:classPartition properties of the index

Find the index
entry for a
particular
entity

Append the encoded entity URI to the value of the void:uriLookupEndpoint
property

Perform a text
query

Populate the template specified in the osd:template property (if present),
or alternatively the template specified in the <Url> element
corresponding to the desired data format in the OpenSearch
Description document linked via the void:openSearchDescription property

Locate the
source data
for an entity

Once the data for an entity has been retrieved, find the owl:sameAs triples
which have the entity URI as either the subject or the object

List the items
in the dataset
or a partition

Retrieve the data either from the URL in the void:rootResource property,
from one of the void:classPartition properties, or a query, then locate all
of the rdfs:seeAlso properties which have that URL as a subject.

Paginate
through a
dataset or
query results

Follow the xhtml:prev and xhtml:next properties where available

https://bbcarchdev.github.io/inside-acropolis/#class-index

Applications built for RES must be able to understand the index assembled by Acropolis,
as well as the source data it refers to. Practically, it means that they must be able to
retrieve and process RDF from remote web servers and interpret at least the common
metadata vocabularies described in this book which are relevant to the consuming
application.

In a perfect world, consuming Linked Open Data is as straightforward as:—

While this process is simple, and could be implemented using virtually any HTTP client in
common use today, it brings about a few questions. How do you deal with redirects?
What happens if the server doesn't return the data in the format that you asked for?
Where do you start?

This chapter aims to answer all of these questions so that your RES application can be
both useful and robust in face of real-world challenges.

As part of the RES project, we are developing a Linked Open Data client library. Although
at present this library is currently only available to low-level languages such as C and C++,
the process it follows can be implemented in any language. It is intended to be a liberal
consumer which can deal with real situations, such as different kinds of redirects and
content negotiation failing or being disabled by the publisher.

The algorithm is as follows (implemented in the LOD library in fetch.c):—

Requirements for consuming
applications

4

Retrieving and processing Linked Open Data4.1

Although it's useful to understand the mechanics of consuming Linked
Open Data if you are developing applications for it, consumer libraries may
exist for your preferred platform and programming language already. A list
of some of these is included in an appendix at the end of this book.

i

Make a request for the URI you want to get data about, sending an Accept HTTP request
header containing the MIME types of the formats you support in your application.
Parse the data in the response using an RDF parser.

Examine the parsed data to find triples whose subject is the URI that you started with.

Consuming Linked Open Data in detail4.1.1

Optionally, check if data about the request-URI is present in our RDF model: if so, return
a reference to it.

1.

Append request-URI to subject-list.2.

If request-URI has a fragment, remove it and store it as fragment.3.

https://bbcarchdev.github.io/inside-acropolis/#common
https://bbcarchdev.github.io/liblod/
https://github.com/bbcarchdev/liblod/blob/master/fetch.c
https://bbcarchdev.github.io/inside-acropolis/#lod-consumer-tools
https://wikipedia.org/wiki/Fragment_identifier

Set followed-link to false, and count to 0.4.

If count is more than our configured max-redirects value, return an error status
indicating that the redirect limit has been exceeded.

5.

Create an HTTP request for request-URI, setting the Accept header based upon the data
formats supported by the application. Note that RES requires publishers and
applications to support at least RDF/XML (application/rdf+xml) and Turtle (text/turtle), but
both clients and servers may support other formats which can be negotiated.

6.

Perform the HTTP request. Note that this should be a single request-response pair,
and not automatically follow redirects.

7.

If a low-level error in performing the request occurred (such as the hostname in the
URI not being resolveable), return an error status indicating that the request could not
be performed.

8.

Store the canonicalised form of request-URI as the base.9.

Obtain the Content-Type of the response, if any, and store it in content-type.10.

If the HTTP status code is between 200 and 299 and there is a document body:—11.
If content-type is not set, return an error status indicating that no suitable data could
be found.

If the Content-Type is not one of text/html, application/xhtml+xml, application/vnd.wap.xhtml+xml,
application/vnd.ctv.xhtml+xml or application/vnd.hbbtv.xhtml+xml, then skip to step 14.

a.

If followed-link is true, return an error status indicating that a <link rel="alternate"> has
already been followed.

b.

Parse the returned document as HTML, and extract any <link> elements within
<head> which have a type and href attributes and a rel attribute with a value of alternate.

c.

If no suitable <link> elements were found, return an error status indicating that no
suitable data could be found.

d.

Rank the returned links based upon the application's weighting values (allowing an
application to consume a particular serialisation if available in preference to
others).

e.

Append the highest ranked link’s URI (that is, the value of the href attribute) to
subject-list, set request-URI to it, set followed-link to true, increment count, and skip
back to step 5.

f.

If the HTTP status code is between 300 and 399:—12.

Set target-URI to the redirect target (the Location header of the HTTP response). If no
target is available, return with an error status indicating that an unsuitable HTTP
status was returned.

a.

If the HTTP status code is 303, set request-URI to target-URI, increment count and
skip back to step 5.

b.

If fragment is set, append it to target-URI, replacing any fragment which might be
present already.

c.

Push target-URI onto subject-list, increment count, and skip back to step 5.d.

If the HTTP code is not between 200 and 399, return an error status indicating that an
HTTP error was returned by the server.

13.

Just as an ordinary web browser needs a homepage or an address bar, so too do Linked
Open Data applications. Whether your application has a fixed configured starting point or
is intended to be an open-ended “data browser”, the RES index is intended to be a useful
Linked Open Data home for many applications.

Described in more detail in The RES API: the index and how it’s structured, the index is itself
Linked Open Data which can be retrieved and processed using the algorithms described
above. The URI for the index is currently http://beta.acropolis.org.uk, and this URI can be
used as default “homepage” for RES applications.

In the same way that a homepage only provides the starting point for a web browser, the
same is true of the RES index: applications can allow users to explore and search the
index, but to also follow the onward links to source data and media assets.

For some applications, use the RES index as a starting point won’t be appropriate: it may
be necessary or useful to implement an intermediary service that provides additional
capabilities or a specific curated subset of resources. There is no requirement that RES
applications must directly use the base of the RES index as their home.

What do we mean by “editorial”?

In this context we mean what is in the metadata and the associated media, such as text,
video or images.

Optionally, if content-type is text/plain, application/octet-stream or application/x-unknown, attempt
to determine a new content type via content sniffing. If successful, store the new type
in content-type.

14.

Parse the document body as content-type into our RDF model. If the type is not
supported, or parsing fails for any other reason, return an error status.

15.

Starting with the first item in subject-list:—16.

Set subject-URI to the current entry in the list.a.

Perform a query against the RDF model to determine whether any triples whose
subject are subject-URI exist.

b.

If triples were found, return a reference to them.c.

Otherwise, move to the next item in subject-list.d.

Finally, return an error status indicating that no triples were found in the retrieved data.17.

A starting point: the RES index4.1.2

The URI to the API will change soon as the live version of the platform
replaces the current beta.

!

Editorial Guidelines for Product Developers4.2

What does it say and what is it about?

Is it suitable for all ages to see and hear?

https://bbcarchdev.github.io/inside-acropolis/#api
http://beta.acropolis.org.uk/
https://wikipedia.org/wiki/Content_sniffing

When making metadata and media available in to education, it is important to understand
the expectations of the audience in terms of what they will see and hear.

These guidelines are intended to help product developers think about these issues as
early in the design and development process as possible.

The RES platform is funded with public money and needs to show that it is serving the
public interest and behaving responsibly.

Are there any limits you would want to set around who could see this material?

The RES project envisages that in schools and FE colleges it will be teachers who are
the primary users of the products built on top of the RES platform, both the catalogue
and the assets.
Teachers will then judge the suitability of the content for particular age ranges and
make it available to pupils.

The pupils and students will therefore be the secondary users of any products,
accessing a moderated version of the whole platform.

Teachers will need to share material with pupils and other teachers and this
functionality will be vital.
Where possible the metadata will include any guidance as to the suitability of the
content for particular age groups, for example the BBC would include Guidance
warning metadata.

How this will be displayed to teachers is an important consideration in the design of
products and services.

However where no such information is available, it needs to be clear that this does not
mean that the material is necessarily suitable for all ages (so perhaps a “no age range
given” tag is appropriate?)
The RES project will provide teachers with guidelines about the range of material
available in RES and hints on how to navigate and mediate such a large volume of
metadata and media.

Teachers will also form their own view of what material is suitable for whom, and their
ability to add that information to the metadata and share it is important.

Every product or service built on the RES platform must have a means of feeding back
any concerns about aspects of the assets or the metadata to the provider of the
catalogue and assets.

http://www.bbc.co.uk/guidance/help/

Publishers wishing to make their data visible in the Acropolis index and useable by RES
applications must conform to a small set of basic requirements. These are:

Although RES requires that you publish Linked Open Data, that doesn’t mean you can’t
also publish your data in other ways. While human-facing HTML pages are the obvious
example, there’s nothing about publishing Linked Open Data which means you can’t also
publish JSON with a bespoke schema, CSV, OpenOffice.org spreadsheets, or operate
complex query APIs requiring registration to use.

In fact, best practice generally is that you publish in as many formats as you’re generally
able to, and do so in a consistent fashion. And, while your “data views” (that is, the
structured machine-readable representations of your data about things) are going to be
very dull and uninteresting to most human beings, that doesn’t mean that you can’t serve
nicely-designed web pages about them as the serialisation for ordinary web browsers.

RDF can be serialised in a number of different ways, but there are two serialisations
which RES publishers must provide because these are the two serialisations guaranteed
to be supported by RES applications:

Turtle is increasingly the most common RDF serialisation in circulation and is very widely-
supported by processing tools and libraries.

RDF/XML is an older serialisation which is slightly more well-supported than Turtle.
RDF/XML is often more verbose than the equivalent Turtle expression of a graph, but as
an XML-based format can be generated automatically from other kinds of XML using
XSLT.

Name Media type Further information

Turtle text/turtle http://www.w3.org/TR/2014/REC-turtle-20140225/

RDF/XML application/rdf+xml http://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/

Requirements for publishers5

The data must be expressed as RDF and published as Linked Open Data;

the data must be licensed under permissive terms (in particular, it must allow re-use in
both commercial and non-commercial applications);

the licensing terms must be included in the data itself so that consumers can perform
automated due diligence before using it;
the data should use the vocabularies described in this book for best results (although
you are free to use other vocabularies too).

Checklist for data publication5.1

Support the most common RDF serialisations5.1.1

http://www.w3.org/TR/2014/REC-turtle-20140225/
http://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/

If you are considering publishing your data as JSON, you may consider publishing it as
JSON-LD, a serialisation of RDF which is intended to be useful to consumers which don’t
understand RDF specifically. JSON-LD isn’t currently supported by RES, but may be in the
future.

A minimal RDF serialisation intended for use by RES must include data about three
distinct subjects:

It is recommended that publishers describe any other serialisations which they are
making available as well, but it is not currently a requirement to do so.

A description of the metadata which should be served about the document and
representations is included in the Metadata about documents section.

The data about the document or representation must include a rights information
predicate referring to the well-known URI of a supported license. See the Metadata
describing rights and licensing section for further details.

In your HTML representations, use the <link> element (within the <head> element) with a rel
attribute of "alternate" in order to link to the other representations of the same document:

Subject Example

Document URL http://ialm.int/books/9781899066100

Representation URL http://ialm.int/books/9781899066100.ttl

Item URI http://ialm.int/books/9781899066100#id

<link rel="alternate" type="application/rdf+xml" href="/books/9781899066100.rdf">

<link rel="alternate" type="text/turtle" href="/books/9781899066100.ttl">

The RES crawler will request Turtle by preference.i

Describe the document and serialisations as well as the item5.1.2

Include licensing information in the data5.1.3

The RES crawler will discard data which does not include licensing data,
because without it, the data cannot be used by RES applications.

!

Link to the RDF representations from the HTML variant5.1.4

http://json-ld.org/
https://bbcarchdev.github.io/inside-acropolis/#document-metadata
https://bbcarchdev.github.io/inside-acropolis/#rights

While it’s less efficient than content negotiation (see below) for both consuming
applications and for your server to access your alternative serialisations this way, linking
to them from your HTML provides a useful fall-back capability in the event that content
negotiation fails or has to be disabled—for example, if you need to switch your website to
be served from a content delivery network which doesn’t support negotiation.

It’s not the preferred option because consumers must first obtain the HTML, parse it, and
then request the RDF. Often, generating the HTML page will also be more expensive than
generating the equivalent RDF serialisations.

If you use fragment-based URIs, this means that your web server must be configured to
perform content negotiation on requests received for the portion of the URI before the
hash (#) sign.

For example, if your subject URIs are in the form:

http://ialm.int/books/9781899066100#id

Then when your server receives requests for the document:

/books/9781899066100

It should perform content negotiation and return an appropriate media type, including the
supported RDF serialisations if requested.

When sending a response, the server must send an appropriate Vary header, and should
send a Content-Location header referring to the representation being served. For example:

What do we mean by “editorial”?

In this context we mean what is in the metadata and the associated media, such as text,
video or images.

HTTP/1.0 OK

Server: Apache/2.2 (Unix)

Vary: Accept

Content-Type: text/turtle; charset=utf-8

Content-Location: /books/9781899066100.ttl

Content-Length: 272

…

Perform content negotiation when requests are received for item URIs5.1.5

The Apache web server automatically sends the correct headers when
configured to perform Content Negotiation on a set of static files. See the
Apache mod_negotiation module documentation for further details on its
configuration.

i

Editorial Guidelines for Content Providers5.2

What does it say and what is it about?

http://httpd.apache.org/docs/current/mod/mod_negotiation.html

When making metadata and media available in to education, it is important to understand
the expectations of the users in terms of what they will see and hear.

These guidelines are intended to help content providers think about these issues as early
in the process as possible.

The RES platform is funded with public money and needs to show that it is serving the
public interest and behaving responsibly.

Is it suitable for all ages to see and hear?

Are there any limits you would want to set around who could see this material?

Some items in physical collections are only available to certain users.

How is this information transferred to the online catalogue?

Are there items in your collections which you believe are not suitable for under-18s?
How will you help end users know this?

The RES proposal intends that in schools, the primary users of the products built on
the RES aggregator will be teachers.

But teachers are over-worked and are more likely to use your material if it is easy and
quick to identify as relevant to their students.
If you hold any data or guidance on age suitability you should include this in the data
you publish.

Users will be able to feedback to you about concerns with the metadata or assets,
including possible breach of copyright – how will you as an institution manage this?

Although you will probably already have a mechanism for dealing with feedback
and/or requests of either a legal (copyright, data protection etc) or editorial nature, it is
worth being aware that RES may expose your material to a wider audience and these
requests may therefore increase. Can your existing workflows manage this?
In sharing data and assets are you comfortable that you are complying with the Data
Protection Act.

http://www.legislation.gov.uk/ukpga/1998/29/contents

The RES platform will not directly consume or publish digital media (audio, video, images,
documents) itself. However, it will aggregate data about digital media which has been
published in a form which can be used consistently by RES applications.

This chapter describes how those media assets can be published in ways which will be
most useful to RES applications, while balancing the range of access mechanisms and
rights restrictions applicable to users in educational settings.

While this chapter provides guidance on publishing media assets themselves, those
assets only become useful to RES and RES applications when they are properly described
in accompanying metadata. For more information on publishing data which describes
digital media assets, please refer to the chapter Describing digital assets.

There are three strategies for publishing media for RES: publishing “raw” media assets,
providing embeddable players, and publishing pages which include playback capabilities.

Publishing media directly is most suited to situations where the media assets are openly-
licensed and can be both downloaded and streamed by RES applications. It is not
suitable for media which is rights-restricted to the extent that downloads are not
permitted.

Direct publishing allows an application to make use of native playback, viewing, editing,
and tagging capabilities, and consequentially offers the greatest level of flexibility to
applications and users alike. While it provides no technical barrier to end-users sharing
downloaded media (in whole or part on its own, or combined into a larger composition), it
does not automatically imply that sharing is permitted.

While affording the greatest level of flexibility to the consuming application, publishing
media in this way is also the simplest from a technical perspective: the encoded media
files are simply uploaded to a web server and then described in the accompanying
metadata.

Use direct publication where:—

Publishing digital media6

Approaches to publication6.1

A media publisher may make use of any or all of these strategies, possibly
combined with access-control mechanisms where rights or other legal
restrictions require it.

i

Publishing media directly6.1.1

Licensing allows both streaming and download of the media asset.
If you want to allow snipping or other kinds of editing of the media.

You want to provide the widest possible range of device support.

https://bbcarchdev.github.io/inside-acropolis/#assets
https://bbcarchdev.github.io/inside-acropolis/#media-direct
https://bbcarchdev.github.io/inside-acropolis/#media-frame
https://bbcarchdev.github.io/inside-acropolis/#media-page
https://bbcarchdev.github.io/inside-acropolis/#assets

For example:—

Embeddable players are best suited to situations where media files should not be
downloaded by applications and end-users, but the playback capability may be provided
in-line with other content by an application.

With an embeddable player, although media assets themselves are published in some
fashion, the resource described in accompanying metadata is a web page capable of
playing them, typically via an <iframe> or equivalent, with the metadata including the
preferred dimensions of the frame.

This approach limits the capabilities which can be offered by the RES application to its
users: as far as the application is concerned, the contents of the framed web page are
completely opaque; it can only assume that the page will provide a suitable player for the
media asset, and will have no control over playback.

Use an embeddable player where:—

Property Value

Media asset
URL //upload.wikimedia.org/wikipedia/commons/a/a4/Claude_Monet_1899_Nadar_crop.jpg

MIME type image/jpeg

Embeddable? Yes

Poster image
URL

//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Claude_Monet_1899_Nadar_crop.jpg/180px-

Claude_Monet_1899_Nadar_crop.jpg

Width 2021px

Height 2694px

Title Claude Monet 1899 Nadar crop

License Public domain

Embeddable players6.1.2

Licensing only permits streaming of the asset, but does allow its presentation as part
of a larger body of content (for example, within in a MOOC).

Media is only available through a technology which may not be widely supported
except through a custom player.

Your media is published through a third party solution which does not provide ready
access to direct media asset URLs.
As a fall-back option alongside a direct media link (for example, to enable an
application to generate the embeddable player code snippet for pasting into a MOOC
or social network).

https://upload.wikimedia.org/wikipedia/commons/a/a4/Claude_Monet_1899_Nadar_crop.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Claude_Monet_1899_Nadar_crop.jpg/180px-Claude_Monet_1899_Nadar_crop.jpg
https://commons.wikimedia.org/wiki/Public_domain

For example:—

Stand-alone playback pages provide the least flexibility to RES applications, and—
depending upon presentation—may result in reduced visibility of your media.

With this strategy, an application is not able to embed your media at all, but instead must
navigate to the page that you provide in a browser window. The application might provide
a thumbnail or text link to your playback page, or it might choose to omit the media
altogether if including it would result in a poor user experience.

Use a stand-alone playback page where:—

For example:—

Property Value

Media asset URL //player.vimeo.com/video/110040373

MIME type text/html

Embeddable? Yes

Poster image URL //i.vimeocdn.com/video/494149068_960.jpg

Preferred width 500px

Preferred height 281px

Title Mount Piños Astrophotography Time Lapse

Duration 45s

License Creative Commons 3.0 Unported (CC BY 3.0)

Property Value

Media asset URL http://www.bbc.co.uk/iplayer/episode/p0285z2y/horizon-19811982-the-race-

to-ruin

Title Horizon: 1981-1982: The Race to Ruin

Embeddable? No

Duration 48m52s

Stand-alone playback pages6.1.3

Licensing restrictions mean that you’re not able to authorise any kind of embedding.
As a fall-back option alongside an embeddable player or direct media links
(particularly if you already publish a playback page for each media asset).

https://player.vimeo.com/video/110040373
https://i.vimeocdn.com/video/494149068_960.jpg
http://creativecommons.org/licenses/by/3.0/
http://www.bbc.co.uk/iplayer/episode/p0285z2y/horizon-19811982-the-race-to-ruin

A key aim of the RES project is to increase the visibility of and access to digital media
resources which are available to staff and students of educational establishments within
the United Kingdom. While this naturally includes the wealth of resources which are
openly-licensed and available to everybody, it also includes digital media which can only
be accessed at scale by UK educational users.

In order to provide access to this material, publishers typically implement some kind of
access control. While the RES platform itself is generally agnostic to media assets and
their access-control mechanisms, RES applications require the ability to make user-
interface decisions based upon the access restrictions imposed upon the media.

For this reason, RES defines three specific kinds of access-control mechanism, as well as
a policy which RES-conformant media must be published according to. Specifically, this
policy is that media assets must:—

For example, all of the following conform to the policy:—

Geographical
restriction

UK-only

Access control and media availability6.2

Media must be available either freely or under the terms of a blanket or statutorily-
backed licensing scheme available to educational establishments (or licenses may be
obtained on their behalf by local authorities or central government).

1.

It must be possible to obtain the media without further subscription or other charges,
however “value-added” services may be provided which offer additional capabilities
(such as archiving, enhanced search), provided those services can be readily
subscribed to at an establishment level.

2.

The media must be generally available on a long term basis. Media available only for
short periods has limited value in education because it prevents the same resources
being used again in the future.

3.

The technical access-control mechansims must be one or more of those described
below.

4.

The nature of the access-control mechanism must be described in the metadata
accompanying the media.

5.

Media published via Wikimedia Commons is available to everybody on a permanent
basis without any additional payment or subscritpion.

Programmes which are part of BBC Four Collections are made available to everybody
in the UK on a long-term basis (but may not be embedded). Access control is
implemented through geo-blocking.

Recordings of broadcasts made according to the terms of Section 35 of the Copyright,
Designs and Patents Act 1988 (as amended) is may be used by the institution who
recorded it (or it was recorded on behalf of), provided their ERA Licence is maintained.

http://www.bbc.co.uk/bbcfour/collections
https://bbcarchdev.github.io/inside-acropolis/#media-geo
http://www.legislation.gov.uk/ukpga/1988/48/section/35
http://www.era.org.uk/

For more information about describing rights restrictions and access-control
mechansims, see Metadata describing rights and licensing and Describing conditionally-
accessible resources.

Geo-blocking is the automatic determination of ability-to-access a resource by looking up
the end-user’s public IP address against a database correlating IP address ranges with
countries. For example, the address 132.185.240.10 is part of a range which is within the
UK, whereas 192.0.32.8 is part of a range which is within the US.

Geo-location databases and live services are available both for free and on commercial
terms, with varying levels of quality and service assurance.

Geo-blocking should generally be applied only where other access-control mechanisms
are not applicable: for example, because a media asset is available to everybody within a
particular country.

Shibboleth is a federated authentication single sign-on mechanism which is widely used
by providers of materials to provide access only to staff and students of educational
establishments.

The UK Access Management Federation, operated by Janet, provides the Shibboleth
federation for UK institutions.

Shibboleth-protected resources present a sign-in page to users who are not already
authenticated, which makes it suitable for use with both the embeddable player and the
stand-alone playback page publication approaches described above.

Shibboleth-based access control is the preferred mechanism for use where media should
be made available only to educational users.

IP-based access control is often the simplest mechanism to implement, as it requires
only for the publisher to check the end-user’s public IP address against a white-list and
allow or permit access as required.

Services which are authorised by ERA to maintain an archive of Section 35 recordings
and make them available to ERA Licence-holders who pay a subscription fee, provided
access is through a mechanism described below.

A consortium of rights-holders who together define a scheme for access to one or
more sets of media on an affordable establishment-level subscription basis, provided
access is through a mechanism described below.

Geographical restrictions (geo-blocking)6.2.1

Federated access control using Shibboleth and the UK Access Management
Federation

6.2.2

IP-based access control6.2.3

https://bbcarchdev.github.io/inside-acropolis/#rights
https://bbcarchdev.github.io/inside-acropolis/#conditional-access
https://shibboleth.net/
http://www.ukfederation.org.uk/
http://www.jisc.ac.uk/janet

However, creating and maintaining that white-list can involve significant administrative
burden, particularly on a nation-wide basis, and it does not allow ready access to media to
remote-working staff and students without their institution providing additional
infrastructure such as remote-desktop services and VPNs.

IP-based access control should generally be employed alongside Shibboleth-based
authentication, and only for specific institutions which are not able to participate in the UK
Acesss Management Federation.

Vocabularies used in this section:

Dublin Core Metadata Initiative (DCMI) Terms is an extremely widely-used general-
purpose metadata vocabulary which can be used in the first instance to describe both
web and abstract resources.

In particular, the following predicates are recognised by Acropolis itself and may be
relayed in the RES index:

The FOAF vocabulary also includes some general-purpose predicates:

Vocabulary Namespace URI Prefix

RDF syntax http://www.w3.org/1999/02/22-rdf-syntax-ns# rdf:

RDF schema http://www.w3.org/2000/01/rdf-schema# rdfs:

DCMI terms http://purl.org/dc/terms/ dct:

FOAF http://xmlns.com/foaf/0.1/ foaf:

Predicate Meaning

dct:title Specifies the formal title of an item

dct:rights
Specifies a URI for rights information (see Metadata describing rights and
licensing)

dct:license Alternative predicate for specifying rights information

dct:subject Specifies the subject of something

Predicate Meaning

foaf:primaryTopic Specifies the primary topic of a document

foaf:homepage Specifies the canonical homepage for something

foaf:topic Specifies a topic of a page (may be used instead of dct:subject)

foaf:depiction Specifies the URL of a still image which depicts the subject

Common metadata7

Referencing alternative identifiers: expressing equivalence7.1

http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/PER-rdf-schema-20140109/
http://dublincore.org/documents/dcmi-terms/
http://xmlns.com/foaf/spec/
https://bbcarchdev.github.io/inside-acropolis/#rights

Vocabularies used in this section:

Linked Open Data in general, and RES in particular, is at its most useful when the data
describing things links to other data describing the same thing.

In RDF, this is achieved using the owl:sameAs predicate. This predicate implies a direct
equivalence relationship—in effect, it creates a synonym.

You can use owl:sameAs whether or not the alternative identifiers use http: or https:, although
the usefulness of URIs which aren't resolveable is limited.

For example, one might wish to specify that our book has an ISBN using the urn:isbn: URN
scheme [RFC3187]:

We can also indicate that the book described by our data refers to the same book at the
British Library:

Vocabularies used in this section:

The data describing digital assets (including RDF representations themselves) must
include explicit licensing data in order for it to be indexed by Acropolis and used by RES
applications. Additionally, the RDF data must be licensed according to the terms of a
supported permissive licence.

Vocabulary Namespace URI Prefix

OWL http://www.w3.org/2002/07/owl# owl:

</books/9781899066100#id> owl:sameAs <urn:isbn:9781899066100> .

</books/9781899066100#id> owl:sameAs <http://bnb.data.bl.uk/id/resource/011012558> .

Vocabulary Namespace URI Prefix

DCMI terms http://purl.org/dc/terms/ dct:

ODRL 2.0 http://www.w3.org/ns/odrl/2/ odrl:

Take care when using owl:sameAs to ensure that the subject and the object
really are directly equivalent. In particular, make sure that you don’t
accidentally state that somebody’s description of something (be it an HTML
page or some other serialisation) is the same as the thing being described.

i

Metadata describing rights and licensing7.2

http://tools.ietf.org/html/rfc3187
http://www.w3.org/TR/owl2-syntax/
http://bnb.data.bl.uk/id/resource/011012558
http://dublincore.org/documents/dcmi-terms/
http://www.w3.org/community/odrl/

In order to express this, you can use the dct:rights or dct:licence predicates (at your option).
Where the subject is an RDF representation, the object of the statement must be the well-
known URI of a supported licence (see below). For other kinds of digital asset, the object
of the statement can either be a well-known URI of a supported licence, or a reference to
a set of terms described in RDF using the ODRL 2.0 vocabulary.

The Acropolis crawler discards RDF data which is not explicitly licensed using one of the
well-known licenses listed below. Note that the URI listed here is the URI which must be
used as the object in the licensing statement.

The following example specifies that the Turtle representation of the data about our book
is licensed according to the terms of the Creative Commons Attribution 4.0 International
licence.

See the Metadata describing documents section for further details on describing
representations.

This section will be expanded significantly in future editions.

Licence URI

Creative Commons Public Domain (CC0) http://creativecommons.org/publicdomain/zero/1.0/

Library of Congress Public Domain http://id.loc.gov/about/

Creative Commons Attribution 4.0
International (CC BY 4.0) http://creativecommons.org/licenses/by/4.0/

Open Government Licence http://reference.data.gov.uk/id/open-government-

licence

Digital Public Space Licence, version 1.0 http://bbcarchdev.github.io/licences/dps/1.0#id

Creative Commons 1.0 Generic (CC BY 1.0) http://creativecommons.org/licenses/by/1.0/

Creative Commons 2.5 Generic (CC BY 2.5) http://creativecommons.org/licenses/by/2.5/

Creative Commons 3.0 Unported (CC BY
3.0) http://creativecommons.org/licenses/by/3.0/

Creative Commons 3.0 US (CC BY 3.0 US) http://creativecommons.org/licenses/by/3.0/us/

</books/9781899066100.ttl> dct:rights <http://creativecommons.org/licenses/by/4.0/> .

Well-known licences7.2.1

ODRL-based descriptions7.2.2

Describing conditionally-accessible resources7.3

http://www.w3.org/ns/odrl/2/
https://bbcarchdev.github.io/inside-acropolis/#document-metadata
http://creativecommons.org/publicdomain/zero/1.0/
http://id.loc.gov/about/
http://creativecommons.org/licenses/by/4.0/
http://reference.data.gov.uk/id/open-government-licence
http://bbcarchdev.github.io/licences/dps/1.0#id
http://creativecommons.org/licenses/by/1.0/
http://creativecommons.org/licenses/by/2.5/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/us/

Vocabularies used in this section:

Many kinds of digital asset are not available to the general public but may be accessed by
the RES audience: students and teachers affiliated with a recognised educational
institution in the UK. This may be because specific exceptions in law allow access when it
would not otherwise be possible, or because the rights-holder has elected to make the
assets available only to those in education.

In order to support this, and ensure that users of RES applications are able to use to the
greatest range of material that they legitimately have access to, the metadata describing
those assets which aren’t available to the public but are to educational users must
describe means by which they are accessed.

This section will be expanded significantly in future editions.

Vocabulary Namespace URI Prefix

Access Control ontology http://www.w3.org/ns/auth/acl acl:

A given asset may be available from multiple sources, each with its own
specific constraints applied to who may access it. For example, a recording
of a radio programme might be held on behalf of educational users by two
separate online services, both requiring that the affiliated institution be a
licensee of the relevant ERA licensing scheme, and both operating their own
institutional-level subscription schemes. To be most useful, the RES index
must aggregate the metadata describing both means of access, and the
metadata must convey sufficient information so as to allow applications to
decide which, if any, should be presented to the end-user.

i

http://www.w3.org/wiki/WebAccessControl
http://www.era.org.uk/

Vocabularies used in this section:

Give the document a class of foaf:Document:

Give the document a title:

If the document is not a data-set, specify the primary topic (that is, the URI of the thing
described by the document):

Link to each of the serialisations:

Use a member of the DCMI type vocabulary as a class:

Vocabulary Namespace URI Prefix

RDF syntax http://www.w3.org/1999/02/22-rdf-syntax-ns# rdf:

DCMI terms http://purl.org/dc/terms/ dct:

DCMI types http://purl.org/dc/dcmitype/ dcmit:

FOAF http://xmlns.com/foaf/0.1/ foaf:

W3C formats registry http://www.w3.org/ns/formats/ formats:

</books/9781899066100> a foaf:Document .

</books/9781899066100> dct:title "'Acronyms and Synonyms in Medical Imaging' at the Intergalatic

Alliance Library & Museum"@en .

</books/9781899066100> foaf:primaryTopic </books/12345#id> .

</data/9781899066100> dct:hasFormat </data/9781899066100.ttl> .

</data/9781899066100> dct:hasFormat </data/9781899066100.html> .

</books/9781899066100.ttl> a dcmit:Text .

Describing digital assets8
Metadata describing documents8.1

Describing your document8.1.1

If the document is actually a data-set, see also the Collections and data-sets
section.

i

Describe each of your serialisations8.1.2

http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://dublincore.org/documents/dcmi-terms/
http://dublincore.org/documents/dcmi-terms/
http://xmlns.com/foaf/spec/
http://www.w3.org/ns/formats/
https://bbcarchdev.github.io/inside-acropolis/#collections

Where available, use a member of the W3C formats vocabulary as a class:

Use the dct:format predicate, along with the MIME type beneath the
http://purl.org/NET/mediatypes/ tree:

Give the serialisation a specific title:

Specify the licensing terms for the serialisation, if applicable:

See the Metadata describing rights and licensing section for details on the licensing
statements required by RES, as well as information about supported licences.

Vocabularies used in this section:

</books/9781899066100.ttl> a formats:Turtle .

</books/9781899066100.ttl> dct:format <http://purl.org/NET/mediatypes/text/turtle> .

</books/9781899066100.ttl> dct:title "Description of 'Acronyms and Synonyms in Medical Imaging' as

Turtle (RDF)"@en .

</books/9781899066100.ttl> dct:rights <http://creativecommons.org/licenses/by/4.0/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix dct: <http://purl.org/dc/terms/> .

@prefix dcmit: <http://purl.org/dc/dcmitype/> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix formats: <http://www.w3.org/ns/formats/> .

</data/9781899066100>

 a foaf:Document ;

 dct:title "'Acronyms and Synonyms in Medical Imaging' at the Intergalatic Alliance Library &

Museum"@en .

 foaf:primaryTopic </books/12345#id> ;

 dct:hasFormat

 </data/9781899066100.ttl> ,

 </data/9781899066100.html> .

</data/9781899066100.ttl>

 a dcmit:Text, formats:Turtle ;

 dct:format <http://purl.org/NET/mediatypes/text/turtle> ;

 dct:title "Description of 'Acronyms and Synonyms in Medical Imaging' as Turtle (RDF)"@en ;

 dct:rights <http://creativecommons.org/licenses/by/4.0/> .

</data/9781899066100.html>

 a dcmit:Text ;

 dct:format <http://purl.org/NET/mediatypes/text/html> ;

 dct:title "Description 'Acronyms and Synonyms in Medical Imaging' as a web page"@en .

Vocabulary Namespace URI Prefix

Example8.1.3

Collections and data-sets8.2

https://bbcarchdev.github.io/inside-acropolis/#rights

DCMI terms http://purl.org/dc/terms/ dct:

VoID http://rdfs.org/ns/void# void:

Data-set auto-discovery8.2.1

Images8.3

Video8.4

Audio8.5

http://dublincore.org/documents/dcmi-terms/
http://vocab.deri.ie/void

Describing physical things9

The RES index entry for a physical thing will have a class of
crm:E18_Physical_Thing.

i

http://www.cidoc-crm.org/cidoc-crm/E18_Physical_Thing

Describing people, projects and
organisations

10

Describing places11

The RES index entry for a place will have a class of geo:SpatialThing.i

http://www.w3.org/2003/01/geo/

Describing events12

The RES index entry for an event will have a class of event:Event.i

http://motools.sourceforge.net/event/event.html#term_Event

Vocabularies used in this section:

Vocabulary Namespace URI Prefix

SKOS http://www.w3.org/2008/05/skos# skos:

Describing concepts and taxonomies13

http://www.w3.org/TR/2008/WD-skos-reference-20080829/skos.html

Describing creative works14

The RES index entry for a creative work will have a class of frbr:Work.i

http://vocab.org/frbr/core.html#Work

This section will be expanded significantly in future editions.

Appendix I: Tools and resources
Guides

Tools for consuming Linked Open Data

Tools for processing RDF and publishing Linked Open Data

Technical standards

Under the hood: the architecture of
Acropolis

15

RDF 1.1 primer
Linked Data Patterns

Linked Data - The Story so Far (PDF)

Cool URIs don’t change
Cool URIs for the Semantic Web

EasyRDF is a PHP library for consuming and producing RDF

RDFLib is a suite of libraries and tools for working with RDF in Python
node-rdf is a suite of libraries and tools for working with RDF in ECMAScript
(JavaScript), and in particular with Node.js

libcurl is an extensible multi-protocol file transfer library with bindings for many high-
level languages

Redland (librdf) is a set of libraries for parsing, serialising and processing RDF
libxml2 is a very capable and widely used XML and HTML parsing library

liblod is a Linked Open Data client library developed by the RES project, and which
uses the capabilities of libcurl, librdf and libxml2

D2RQ is a system for transforming data in relational databses to RDF
Twine is an engine developed by the RES project for transforming data and pushing it
into an RDF quad-store

Quilt is a FastCGI application developed by the RES project for publishing the contents
of an RDF quad-store as Linked Open Data

RDF 1.1 Turtle

RDF 1.1 TriG

RDF 1.1 XML Syntax (RDF/XML)
RFC 7230: Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing

RFC 7231: Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content

http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140225/
http://patterns.dataincubator.org/book/
http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf
http://www.w3.org/Provider/Style/URI.html
http://www.w3.org/TR/cooluris/
http://www.easyrdf.org/
https://github.com/RDFLib
https://github.com/Acubed/node-rdf
http://curl.haxx.se/libcurl/
http://librdf.org/
http://xmlsoft.org/html/index.html
https://bbcarchdev.github.io/liblod
http://d2rq.org/
https://bbcarchdev.github.io/twine/
https://github.com/bbcarchdev/quilt
http://www.w3.org/TR/2014/REC-turtle-20140225/
http://www.w3.org/TR/2014/REC-trig-20140225/
http://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231

Appendix II: Codecs & container
formats
Video codecs

Kind Usage Properties Examples

Preservation Long-term archive
storage

Lossless
compression,
typically 2:1

DNG sequence, Motion
JPEG 2000 lossless, VC2
(Dirac) lossless

Intermediate
(mezzanine) Fine-cut editing Visually lossless,

typically 4:1–6:1
VC2 (Dirac), VC3 (DNx),
Apple ProRes

Delivery

Distribution through
a broadcast chain or
publishing on
physical media

Output format,
constrained by
bandwidth, typically
10:1–40:1

H.262 (MPEG-2 Part 2),
H.264 (MPEG-4 Part 10,
AVC)

Browse
Lightweight,
streamable, viewing
proxy

Output format,
constrained by
bandwidth, typically
in excess of 50:1

H.262 (MPEG-2 Part 2),
H.264 (MPEG-4 Part 10,
AVC), WebM (VP8+),
Theora (VP3+), VP6

Codec Kind Authority Lossy/lossless Depth Chroma Notes

SMPTE VC-
2 (Dirac) Video SMPTE/BBC Both 8, 10,

12

4:2:0,
4:2:2,
4:4:4

Currently
limited
support

SMPTE VC-
3 (DNx) Video SMTPE/Avid Lossy 8, 10

3:1:1,
4:2:2,
4:4:4

Max
1080i59.94

H.262
(MPEG-2
Part 2)

Video ISO/MPEG Lossy 8
4:2:0,
4:2:2,
4:4:4

Considered
legacy

H.264
(MPEG-4
Part 10,
AVC)

Video ISO/MPEG Lossy 8, 10
4:2:0,
4:2:2,
4:4:4

Widely
supported

Apple
ProRes Video Apple Lossy 10, 12 4:2:2,

4:4:4

Proprietary
intermediate
codec

Apple
Intermediate Video Apple Lossy 8, 10 4:2:0 Considered

Audio codecs

Codec legacy

Ogg
Theora/VP3 Video Xiph Lossy 8

4:2:0,
4:2:2,
4:4:4

VP6 Video Google/Adobe Lossy 8 4:2:0
Classic
Flash video
codec

WebM/VP8+ Video Google 8 4:2:0 Limited
support

Motion
JPEG 2000 Video ISO/JPEG Both 8, 10 Various

Particularly
suited to
preservation

Kind Usage Properties Examples

Preservation Long-term archive
storage

Lossless
compression,
typically 2:1

Raw PCM, FLAC, ALAC,
Dolby TrueHD

Intermediate
(mezzanine) Fine-cut editing Audibly lossless,

typically 4:1–6:1

Raw PCM, FLAC, ALAC, AAC
(MPEG-2 Part 7, MPEG-4
Part 3), Dolby TrueHD

Delivery

Distribution
through a
broadcast chain or
publishing on
physical media

Output format,
constrained by
bandwidth,
typically 7:1

AAC (MPEG-2 Part 7, MPEG-
4 Part 3), MP3 (MPEG-1 Part
3, MPEG-2 Part 3), Dolby AC-
3, Dolby TrueHD

Browse Lightweight,
streamable, proxy

Output format,
constrained by
bandwidth,
typically in excess
of 11:1

AAC (MPEG-2 Part 7, MPEG-
4 Part 3), MP3 (MPEG-1 Part
3, MPEG-2 Part 3), Dolby AC-
3

Codec Kind Authority Lossy/lossless Notes

Raw PCM Audio Various Uncompressed Typically wrapped in
AIFF or RIFF (WAV)

FLAC Audio Xiph Lossless Limited hardware
support

Apple Lossless (ALAC) Audio Apple Lossless Limited support

Image codecs

Dolby TrueHD Audio Dolby Lossless

Dolby AC-3 Audio Dolby Lossy
Widely supported in
professional
applications

AAC (MPEG-2 Part 7,
MPEG-4 Part 3) Audio ISO/MPEG Lossy Widely supported

MP3 (MPEG-1 Part 3,
MPEG-2 Part 3) Audio ISO/MPEG Lossy Very widely supported

Ogg Vorbis Audio Xiph Lossy Adopted as audio
codec for WebM

Opus Audio IETF Lossy
Currently being
trialled, particularly by
radio broadcasters

Kind Usage Properties Examples

Preservation
Long-term archive
storage, editing &
composition

Lossless
compression,
typically 2:1

Adobe DNG (RAW),
JPEG 2000 (ISO/IEC
15444) lossless, TIFF,
PNG

Delivery

Distribution through a
broadcast chain or
publishing on physical
media

Output format,
constrained by
bandwidth, typically
10:1-40:1

JPEG 2000 (ISO/IEC
15444) lossless, TIFF,
PNG

Browse Lightweight viewing
proxy/thumbnail

Output format,
constrained by
bandwidth, typically in
excess of 30:1

JPEG (ISO/IEC
10918), JPEG 2000
(ISO/IEC 15444)
lossless, PNG

Codec Kind Authority Lossy/lossless
Depth

(BPC)
Chroma Notes

Adobe
DNG

RAW
image Adobe Lossless Arbitrary Derived

from TIFF

DPX Processed
image SMPTE Lossless 8-64 log

TIFF ISO/Adobe Both Arbitrary 4:4:4,
4:2:0

Supports
HDR,
alpha

Container formats

OpenEXR Processed
image

Disney-
Pixar

Both 16 Supports
HDR

JPEG
2000
(ISO/IEC
15444)

Processed
image ISO/JPEG Both 8, 10 Various

Supports
sequences
with Motion
JPEG 2000

JPEG
(ISO/IEC
10918)

Processed
image ISO/JPEG Lossy 8 4:2:0

PNG
(ISO/IEC
15948)

Processed
image W3C Lossless 8bpp,

8bpc
Supports
alpha

WebP Processed
image Google Both 8 4:2:0

Derived
from
WebM/VP8+

Container Authority Seekable?
Multiple

tracks?

Multiple

programs?
Notes

Transport
Stream
(MPEG-2 Part
1)

ISO/MPEG No Yes Yes

Used by DVB, ATSC,
ARIB, Apple HLS,
modified for use by
Blu-Ray and AVCHD

Program
Stream
(MPEG-2 Part
1)

ISO/MPEG Yes Yes No
Used by DVD-Video
(VOB), HD-DVD
(EVO)

QuickTime Apple Yes Yes No
Now harmonised
with and extends
Base Media

Base Media
(MPEG-4 Part
12)

ISO/MPEG Yes Yes No Derived from
QuickTime .mov

MP4 (MPEG-4
Part 14) ISO/MPEG Yes Yes No Derived from Base

Media

FLV Adobe Yes Yes No Derived from Base
Media

3GP & 3G2 3GPP Yes Yes No Derived from Base
Media

Transport Stream

AVCHD/Blu-
Ray MTS/TOD

Various Yes Yes No packets prefixed
with a 32-bit
timecode

Elementary
Stream (ES) ISO/MPEG No No No Raw codec data

Packetized
Elementary
Stream (PES)

ISO/MPEG Yes No No

Elementary Stream
split into packets
with an added
header

MXF SMPTE Yes Yes No

Forms the basis of
the Digital
Production
Partnership (DPP)
UK broadcasting
delivery
specification

AIFF Apple Yes No No
Typically used as a
lightweight single-
essence container

AAF AMWA Yes Yes No

Derived from
Microsoft (OLE)
Structured Storage
as used by legacy
Microsoft Office

Matroska Matroska Yes Yes No Not well-supported

JP2 (ISO
15444-12) ISO/JPEG No No

Derived from Base
Media; profiled for
JPEG 2000 (and
Motion JPEG 2000)
essence

WebM Google Yes Yes No

Derived from
Matroska; only used
to carry WebM
audio & video
essence

RIFF Microsoft Yes Yes No WAV and AVI are
both RIFF formats

ASF Microsoft Yes Yes No
Considered legacy;
WMA and WMV are
both ASF formats

Ogg Xiph Yes Yes No
De facto container
for Vorbis audio and
Theora video

Metadata formats

Container Authority Extensibility Standalone?
Embedded

in
Notes

Exif Unmaintained Controlled No
JPEG,
TIFF, JPEG
2000, PNG

Largely
superseded by
XMP; contains
IPTC IIM

Adobe
XMP Adobe Arbitrary

(URIs) Yes TIFF, JPEG
2000, PDF

XMP is a
subset of
RDF/XML;
widely-used

ID3v2 Various Consensus No MP3, AIFF,
MP4

Considered
legacy, but
widely-used

Ogg Xiph Controlled No Ogg

MP4 ISO/MPEG FourCC
registry No

Base
Media and
derivatives

MPEG-7 ISO/MPEG Controlled Yes Base
Media

XML-based;
describes
relationships
between
components

MPEG-21 ISO/MPEG Controlled Yes Base
Media

Includes rights
expression

TV-
Anytime Unmaintained Controlled Yes Base

Media

Considered
legacy but
used in
broadcast
applications

Turtle
(RDF) W3C Arbitrary

(URIs) Yes

Not currently
widely-used as
a media
metadata
container; can
be generated
from RDF/XML

RDF/XML W3C Arbitrary
(URIs) Yes

Generally
considered
legacy,
superseded by
Turtle; basis of
Adobe XMP

Packaging formats

Streaming formats

Package Authority
Metadata

formats

Container

formats

Multiple

programs?
Notes

AVCHD Sony/Panasonic MTS/TOD Yes Derived from
Blu-Ray

DVD-Video DVD Forum

Program
Stream
(MPEG-2
Part 1)

Yes

Blu-Ray BDA MTS/TOD Yes

CinemaDNG Adobe XMP MXF,
DNG No

Intended to
package
losslessly-
encoded
media

Digital
Production
Partnership
(DPP)

DPP DPP XML MXF No

Intended for
delivery of
complete
programmes
to
broadcasters

Format Authority
Manifest

format

Container

formats
Notes

IIS
Smooth
Streaming

Microsoft XML MTS/TOD HTTP-based adaptive streaming
for Silverlight clients

RTSP &
RTP IETF SDP

RTMP Adobe Protocol
exchange

Adaptive streaming for Adobe
Flash; considered legacy but
remains widely-used, often
alongside HLS

Apple
HLS Apple/IETF

Extended
playlist
(m3u8)

Transport
Stream
(MPEG-2
Part 1)

Particularly well-supported on
mobile devices

Adobe
HDS Adobe XML FLV

Considered legacy; Adobe is
transitioning to HLS for streaming
media

Vocabulary index

Vocabulary Namespace URI Prefix Section

Access Control
ontology http://www.w3.org/ns/auth/acl acl:

Describing
conditionally-
accessible
resources

Basic geo
vocabulary http://www.w3.org/2003/01/geo/wgs84_pos# geo: Describing places

Creative Commons
Rights Expression
Language

http://creativecommons.org/ns# cc:
Metadata describing
rights and licensing

CIDOC CRM http://www.cidoc-crm.org/cidoc-crm/ crm:
Describing physical
things

DCMI Metadata
Terms http://purl.org/dc/terms/ dct:

Common metadata,
Metadata describing
rights and licensing,
Collections and
data-sets

DCMI Types http://purl.org/dc/dcmitype/ dcmit:

Metadata describing
documents,
Collections and
data-sets

Event ontology http://purl.org/NET/c4dm/event.owl# event: Describing events

FOAF http://xmlns.com/foaf/0.1/ foaf: Common metadata

FRBR Core http://purl.org/vocab/frbr/core# frbr:
Describing creative
works

GeoNames
Ontology http://www.geonames.org/ontology# gn: Describing places

Media RSS http://search.yahoo.com/mrss/ mrss:

Publishing digital
media, Describing
digital assets

ODRL 2.0 http://www.w3.org/ns/odrl/2/ odrl:
Metadata describing
rights and licensing

OpenSearch http://a9.com/-/spec/opensearch/1.1/ osd:

The RES API: the
index and how it’s
structured

The RES API: the
index and how it’s

http://www.w3.org/wiki/WebAccessControl
https://bbcarchdev.github.io/inside-acropolis/#conditional-access
http://www.w3.org/2003/01/geo/
https://bbcarchdev.github.io/inside-acropolis/#places
http://creativecommons.org/ns
https://bbcarchdev.github.io/inside-acropolis/#rights
http://www.cidoc-crm.org/html/5.0.4/cidoc-crm.html
https://bbcarchdev.github.io/inside-acropolis/#things
http://dublincore.org/documents/dcmi-terms/
https://bbcarchdev.github.io/inside-acropolis/#common
https://bbcarchdev.github.io/inside-acropolis/#rights
https://bbcarchdev.github.io/inside-acropolis/#collections
http://dublincore.org/documents/dcmi-terms/
https://bbcarchdev.github.io/inside-acropolis/#document-metadata
https://bbcarchdev.github.io/inside-acropolis/#collections
http://motools.sourceforge.net/event/event.html
https://bbcarchdev.github.io/inside-acropolis/#events
http://xmlns.com/foaf/spec/
https://bbcarchdev.github.io/inside-acropolis/#common
http://vocab.org/frbr/core.html
https://bbcarchdev.github.io/inside-acropolis/#creative
http://www.geonames.org/ontology/documentation.html
https://bbcarchdev.github.io/inside-acropolis/#places
http://www.rssboard.org/media-rss
https://bbcarchdev.github.io/inside-acropolis/#media
https://bbcarchdev.github.io/inside-acropolis/#assets
http://www.w3.org/community/odrl/
https://bbcarchdev.github.io/inside-acropolis/#rights
http://www.opensearch.org/Specifications/OpenSearch/1.1
https://bbcarchdev.github.io/inside-acropolis/#api
https://bbcarchdev.github.io/inside-acropolis/#api

OWL http://www.w3.org/2002/07/owl# owl:

structured,
Referencing
alternative
identifiers:
expressing
equivalence

RDF schema http://www.w3.org/2000/01/rdf-schema# rdfs:

The RES API: the
index and how it’s
structured, Common
metadata

RDF syntax http://www.w3.org/1999/02/22-rdf-syntax-

ns#
rdf:

The RES API: the
index and how it’s
structured, Common
metadata

SKOS http://www.w3.org/2008/05/skos# skos:
Describing concepts
and taxonomies

VoID http://rdfs.org/ns/void# void:

The RES API: the
index and how it’s
structured,
Collections and
data-sets

W3C formats
registry http://www.w3.org/ns/formats/ formats:

The RES API: the
index and how it’s
structured,
Metadata describing
documents

XHTML Vocabulary http://www.w3.org/1999/xhtml/vocab# xhtml:

The RES API: the
index and how it’s
structured

http://www.w3.org/TR/owl2-syntax/
https://bbcarchdev.github.io/inside-acropolis/#api
https://bbcarchdev.github.io/inside-acropolis/#sameas
http://www.w3.org/TR/2014/PER-rdf-schema-20140109/
https://bbcarchdev.github.io/inside-acropolis/#api
https://bbcarchdev.github.io/inside-acropolis/#common
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://bbcarchdev.github.io/inside-acropolis/#api
https://bbcarchdev.github.io/inside-acropolis/#common
http://www.w3.org/TR/2008/WD-skos-reference-20080829/skos.html
https://bbcarchdev.github.io/inside-acropolis/#concepts
http://vocab.deri.ie/void
https://bbcarchdev.github.io/inside-acropolis/#api
https://bbcarchdev.github.io/inside-acropolis/#collections
http://www.w3.org/ns/formats/
https://bbcarchdev.github.io/inside-acropolis/#api
https://bbcarchdev.github.io/inside-acropolis/#document-metadata
http://www.w3.org/1999/xhtml/vocab
https://bbcarchdev.github.io/inside-acropolis/#api

Class index
The following RDF classes are applied to entries in the RES index by the aggregator,
based upon the class they are evaluated as belonging to:—

Class Description Section

foaf:Agent
Agents (i.e., things operating on
behalf of people or groups).

Describing people, projects
and organisations

dcmitype:Collection Collections Collections and data-sets

skos:Concept Concepts Describing concepts and
taxonomies

frbr:Work Creative works Describing creative works

void:Dataset Datasets Collections and data-sets

foaf:Document Digital assets Describing digital assets

event:Event Events (time-spans) Describing events

foaf:Organization Organizations Describing people, projects
and organisations

foaf:Person People Describing people, projects
and organisations

crm:E18_Physical_Thing Physical things Describing physical things

geo:SpatialThing Places (locations) Describing places

http://xmlns.com/foaf/spec/#term_Agent
https://bbcarchdev.github.io/inside-acropolis/#people
http://purl.org/dc/dcmitype/Collection
https://bbcarchdev.github.io/inside-acropolis/#collections
http://www.w3.org/TR/skos-reference/#concepts
https://bbcarchdev.github.io/inside-acropolis/#concepts
http://vocab.org/frbr/core.html#Work
https://bbcarchdev.github.io/inside-acropolis/#creative
http://rdfs.org/ns/void#Dataset
https://bbcarchdev.github.io/inside-acropolis/#collections
http://xmlns.com/foaf/0.1/Document
https://bbcarchdev.github.io/inside-acropolis/#assets
http://motools.sourceforge.net/event/event.html#term_Event
https://bbcarchdev.github.io/inside-acropolis/#events
http://xmlns.com/foaf/spec/#term_Organization
https://bbcarchdev.github.io/inside-acropolis/#people
http://xmlns.com/foaf/spec/#term_Person
https://bbcarchdev.github.io/inside-acropolis/#people
http://www.cidoc-crm.org/cidoc-crm/E18_Physical_Thing
https://bbcarchdev.github.io/inside-acropolis/#things
http://www.w3.org/2003/01/geo/
https://bbcarchdev.github.io/inside-acropolis/#places

Predicate index
This section lists the predicates which are specifically recognised by the RES aggregation
engine, whether they are cached (against the original subject URI from the data in which
they appear), and whether they can relayed in the composite entity generated by the
aggregator.

Predicate Entity kind Cached? Relayed?

rdf:type Any Yes Yes, but also mapped
to pre-defined classes

rdfs:label Any Yes Yes

foaf:givenName and
foaf:familyName

People Yes Yes, as rdfs:label

foaf:name Agents Yes Yes, as rdfs:label

gn:name Places Yes Yes, as rdfs:label

gn:alternateName Places Yes Yes, as rdfs:label

dct:title, dc:title,
foaf:name, skos:prefLabel Any Yes Yes, as rdfs:label

foaf:depiction Any Yes Yes

crm:P138i_has_representation Any Yes Yes, as foaf:depiction

dct:subject

Creative works,
collections, digital
assets

Yes Yes

geo:lat Places Yes Yes

geo:long Places Yes Yes

dct:rights, dct:license,
cc:license

Any Yes No

skos:inScheme Concepts Yes Yes

skos:broader Concepts Yes Yes

skos:narrower Concepts Yes Yes

https://bbcarchdev.github.io/inside-acropolis/#class-index

